

Tristan Guillot

Observatoire de la Côte d'Azur

www.obs-nice.fr/guillot

- · Interior structures: principle
 - Jupiter as a benchmark
 - Saturn, Uranus and Neptune
- · Enrichments of the atmospheres: possible scenarios
- · The role of probes

Jupiter as a benchmark

Interior models: principles

Constraints from gravity

Outstanding questions

The importance of water

Saturn Uranus & Neptune

Internal structures

Link atmosphere-interior-core mass

- Less clear for Saturn than Jupiter due to a relatively smaller envelope
- · Absent for Uranus and Neptune:
 - no direct link between the composition of the atmosphere and that of the rock/ice core.
 - Mass of H-He atmosphere is only 1-4 M_{\oplus}

Atmospheric abundances: what do they tell us?

Tropospheric compositions

Tropospheric compositions

The enrichment of the atmospheres

- · 3 possible causes:
 - Efficient delivery of solid planetesimals
 - This most certainly has to occur early during the formation process
 - Core erosion
 - Would explain why Jupiter appears to have a smaller core than Saturn
 - Formation of giant planets in an enriched protosolar disk
- The noble gases are keys to distinguish between the different scenarios
 - But we need their abundances in at least 2 planets...

The "Nice" model of giant planet formation

The "Nice" model of giant planet formation

Pisk mass

Pisk enrichment

Planet mass

Planet enrichment

Jupiter: plain Saturn: dashed

Perspectives...

Probe measurements and scientific rationale

	Jupiter	Saturn	Uranus	Neptune	
He	1	H-He phase diagram; J/S evolution	He fractionation in the protosolar disk (thermal evaporation)?		
Major species except H₂O	1	1	Atmospheric enrichment; Meteorology; Planetesimal delivery		
H ₂ O	Solar system water inventory; Planet formation; Meteorology		Dynamics of the deep atmosphere		
Noble gases	Test formation scenarios; Envelope enrichment by planetesimal delivery or gas accretion of a chemically evolved protosolar disk				
Disequilibrium species (eg CO, PH ₃ , GeH ₄)	(√)	(✔)	Constraints on mixing in the deep atmosphere and compositions		
Isotopic ratios: D/H ¹⁶ O/ ¹⁷ O/ ¹⁸ O ¹⁴ N/ ¹⁵ N, ¹² C/ ¹³ C	Timing of planet formation; Location of planet material in the protosolar disk				
Extinct radionuclides with gas-loving daughter species: e.g. ⁴¹ Ca→ ⁴¹ K; ¹²⁹ I→ ¹²⁹ Xe	Ice/Rock ratio; Timing of planet formation				

Probe measurements and scientific rationale

	Jupiter	Saturn	Uranus	Neptune	
He	1	H-He phase diagram; J/S evolution	He fractionation in the protosolar disk (thermal evaporation)?		
Major species except H ₂ O	1		Atmospheric enrichment; Meteorology; Planetesimal delivery		
H₂O	Solar system water inventory; Planet formation; Meteorology		Dynamics of the deep atmosphere		
Noble gases	1	✓ Test formation scenarios; Envelope enrichment by planetesimal delivery or gas accretion of a chemically evolved protosolar disk			
Disequilibrium species (eg CO, PH ₃ , GeH ₄)	(√)	(✔)	Constraints on mixing in the deep atmosphere and compositions		
Isotopic ratios: D/H ¹⁶ O/ ¹⁷ O/ ¹⁸ O ¹⁴ N/ ¹⁵ N, ¹² C/ ¹³ C	Timing of planet formation; Location of planet material in the protosolar disk				
Extinct radionuclides with gas-loving daughter species: e.g. ⁴¹ Ca→ ⁴¹ K; ¹²⁹ I→ ¹²⁹ Xe	Ice/Rock ratio; Timing of planet formation				

All giant planets should eventually be probed!

- Our four giant planets each have unique features
- Planet formation was a very stochastic process (e.g. work from Morbidelli et al. 2005)
 - The early Solar System may have had Jupiter, Saturn, Neptune, and Uranus as the furthest planet!

